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Mental health problems impact the quality of life of millions of people around the world. However, diagnosis of mental health
disorders is a challenging problem that often relies on self-reporting by patients about their behavioral patterns and social
interactions. Therefore, there is a need for new strategies for diagnosis and daily monitoring of mental health conditions.
The recent introduction of body-area networks consisting of a plethora of accurate sensors embedded in smartwatches
and smartphones and edge-compatible deep neural networks (DNNs) points towards a possible solution. Such wearable
medical sensors (WMSs) enable continuous monitoring of physiological signals in a passive and non-invasive manner.
However, disease diagnosis based on WMSs and DNNs, and their deployment on edge devices, such as smartphones,
remains a challenging problem. These challenges stem from the difficulty of feature engineering and knowledge distillation
from the raw sensor data, as well as the computational and memory constraints of battery-operated edge devices. To this
end, we propose a framework called MHDeep that utilizes commercially available WMSs and efficient DNN models to
diagnose three important mental health disorders: schizoaffective, major depressive, and bipolar. MHDeep uses eight
different categories of data obtained from sensors integrated in a smartwatch and smartphone. These categories include
various physiological signals and additional information on motion patterns and environmental variables related to the
wearer. MHDeep eliminates the need for manual feature engineering by directly operating on the data streams obtained
from participants. Because the amount of data is limited, MHDeep uses a synthetic data generation module to augment real
data with synthetic data drawn from the same probability distribution. We use the synthetic dataset to pre-train the weights
of the DNN models, thus imposing a prior on the weights. We use a grow-and-prune DNN synthesis approach to learn
both architecture and weights during the training process. We use three different data partitions to evaluate the MHDeep
models trained with data collected from 74 individuals. We conduct two types of evaluations: at the data instance level
and at the patient level. MHDeep achieves an average test accuracy, across the three data partitions, of 90.4%, 87.3%, and
82.4%, respectively, for classifications between healthy and schizoaffective disorder instances, healthy and major depressive
disorder instances, and healthy and bipolar disorder instances. At the patient level, MHDeep DNN models achieve an
accuracy of 100%, 100%, and 90.0% for the three mental health disorders, respectively, based on inference that uses 40, 16,
and 22 minutes of sensor data collection from each patient.
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1 INTRODUCTION

Mental health problems impact around 20% of the world population [50]. They may negatively affect a person’s
mind, emotions, behavior, and even physical health. Mental health issues may include various disorders like
bipolar, depression, schizophrenia, and attention-deficit hyperactivity, to name but a few. These disorders not
only affect adults but children and adolescents may suffer from them as well [43]. Moreover, patients with
serious mental health issues have a higher risk of morbidity due to physical health problems.

In order to understand the mental health condition of the patient and provide suitable patient care, early
detection is essential. However, this remains a public health challenge. While many other diseases can be
diagnosed based on specific medical tests and laboratory measurements, detection of mental health problems
mainly relies on self-reports and responses to specific questionnaires designed for identifying certain patterns
of behavior and social interactions. Hence, to address this challenge, novel detection strategies are needed.

There has been recent interest in employing machine learning to detect mental health conditions [16]. Neural
networks (NNs) are popular machine learning models that use nonlinear computations to make inferences from
large datasets. Thus, they have started being deployed in the smart healthcare domain [4, 23, 25, 36, 60, 61].

In previous studies, two main data sources for deep learning-based analysis of mental health have been
clinical data and social media usage data. The former includes studies that use neuro-image data for detecting
various mental health disorders [48], electroencephalogram (EEG) data to study brain disorders [3], and analysis
of electronic health records (EHR) to study mental health problems [19]. Moreover, social media usage patterns
have been used to predict the personal traits of the user. As a result, several recent works focus on exploiting
such patterns to detect psychiatric illness [7].

Although the above works have demonstrated the promise of using machine learning in identifying mental
health disorders, daily mental health monitoring is still a challenge. Because mental health condition treatment
delays may lead to negative outcomes, potentially even loss of life, it is desirable to have immediate and
pervasive mental health detection. This is the motivation behind our mental health detection system, MHDeep.
As shown in Fig. 1, MHDeep relies on physiological data collected using various WMSs. WMSs can be used
to continuously monitor the physiological signals of the wearer throughout the day. This enables constant
tracking of the health conditions of the user. MHDeep uses various sensors embedded in smartwatches and
smartphones. For training purposes, the collected physiological data are processed to obtain a comprehensive
dataset. MHDeep combines data from WMSs with the inference capabilities of DNNs to directly extract mental
health condition from the physiological signals. These inferences can be communicated to a health server that
is accessible to the physician. This has the potential to enhance the ability of the physician to intervene quickly
when mental health conditions deteriorate.

The difficulty of data collection and labeling limits the amount of available data. Hence, reducing the cost
of this process is of great importance [17]. To this end, MHDeep uses synthetic data drawn from the same
probability distribution as real data to augment the dataset. It also leverages a grow-and-prune DNN synthesis
approach [14, 27] to train accurate and computationally efficient DNN models to detect the mental health
condition of the user.

The major contributions of this article are summarized next.

+ We demonstrate an easy-to-use, accurate, and pervasive mental health disorder detection system, called
MHDeep. MHDeep combines physiological signals collected from WMSs with the prediction power of
DNN s to detect three main mental health disorders: bipolar, major depressive, and schizoaffective. Unlike
many other approaches for detecting mental health problems, MHDeep does not rely on any self-reports
from the user.

+ We do an extensive search to extract the most appropriate set of data categories for detecting each of the
three mental health disorders.
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» MHdeep relies on a synthetic data generation module to alleviate the concerns arising from the unavail-
ability of large datasets. It uses a grow-and-prune DNN synthesis approach to improve the accuracy of
the DNN models while reducing their computational costs.

o We demonstrate the performance, accuracy, and feasibility of MHDeep through extensive evaluations.
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Fig. 1. The MHDeep mental health disorder detection system

The rest of the article is organized as follows. Section 2 presents background information on various works
related to MHDeep. Section 3 explains the MHDeep framework thoroughly. Section 4 provides implementation
details. Section 5 presents experimental evaluations. Section 6 provides a short discussion related to this work.
Finally, Section 7 concludes the article.

2 BACKGROUND

In this section, we first provide background information on various mental health disorders and how they affect
patient lives. Next, we discuss various methods for identifying mental health conditions based on machine
learning. We also discuss some of the related work on synthesizing efficient DNN models. Finally, we discuss
WMSs and their applications to various disease diagnosis frameworks.

2.1 Mental health disorders and their impact

Mental health conditions can affect a patient’s thinking, feeling, and behavior. They may have a deep impact
on the daily life of the person and affect their ability to adequately perform in society. There are hundreds of
different mental illnesses [31]. We discuss the three mental health disorders that we target in this work: bipolar,
major depressive, and schizoaffective. These are among the major mental health illnesses and have also been
the subject of other related studies [37].

Bipolar disorder can cause a dramatic shift in a person’s mood, energy, and behavior. It is characterized by
experiences of alternating episodes of manic and depressed states. Major depressive disorder may present
different symptoms like loss of interest, sleep disturbance, change in appetite, and feeling of fatigue. Schizoaf-
fective disorder is characterized by various symptoms of schizophrenia such as episodes of hallucinations and
delusions. It may also present other symptoms such as disorganized thinking, depressed mood, and manic
behavior.
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Apart from various conditions that these mental health disorders may cause, stereotypes related to mental
health seem to still be widely prevalent in society, not just among uninformed people but even among well-
trained professionals [12]. These stereotypes often lead to social and employment discrimination [8] and poor
treatment of physical health problems [13].

2.2 Deep learning for mental health

Deep learning has been recently used to better understand and detect mental health problems. Deep learning
approaches have been applied to various types of data: mainly clinical data and social media usage data [51].
The three types of clinical data used in these works are neuroimage data, EEG data, and EHR data.

Several studies demonstrate the effectiveness of neuroimages in detecting neuropsychiatric disorders [48].
Two types of neuroimage data used in such works are functional magnetic resonance imaging (fMRI) and
structural magnetic resonance imaging (sMRI). fMRI measures brain activity by monitoring blood oxygenation
and flow in response to neural activity. sSMRI examines the anatomy and pathology of the brain. Deep belief
networks have been used to detect the presence of attention-deficit hyperactivity disorder (ADHD) using fMRI
and sMRI data [29, 30]. These data types have also been used to detect schizophrenia [42, 62]. Depression has
been detected using time-series fMRI data using convolutional neural networks (CNNs) and autoencoders
[18]. EEG is another source of data for studying brain disorders. For example, CNN-based feature extraction
from EEG data has been used to detect depression [3]. EHR is a collection of patient-centered records and
includes both structural data such as laboratory reports and unstructured data such as clinical and discharge
notes. Because EHR is a collection of longitudinal records, recurrent neural networks (RNNs) have been used to
distill information from them. Pham et al. [41] use RNN architectures to predict future outcomes of depressive
episodes. Unstructured clinical notes have also been analyzed with deep learning-based models to detect
depression [19]. Social media usage data have also proved their usefulness in identifying psychiatric illnesses.
Birnbaum et al. [7] investigate Facebook messages and patterns of sharing images on social media to distinguish
among healthy individuals, individuals with a schizophrenia spectrum disorder, and individuals with mood
disorders. Other works have used DNN models with textual data and image data shared on social media
platforms to detect stress [32], depression [45], and risk of suicide [11].

MHDeep relies on generating the synthetic data from the same distribution as the real data. However, there
are several works that develop compact and accurate dynamical models to capture the characteristics of the
system under study. The synthetic data can be generated based on these mathematical models. Xue et al. [58]
proposed a multivariate fractal model to capture the long-range memory and spatial dependencies that exist in
biological processes, and showed the benefits of this approach within the context of the brain-machine-body
interface. The authors of [56] proposed a mathematical strategy for constructing models for complex non-linear
dynamics. In addition, Xue et al. [57] proposed a polynomial algorithm to obtain a sub-optimal solution with
optimality guarantees for the NP-hard problem of determining the minimum number of sensors to enable the
recovery of global data dynamics. Although MHDeep uses deep learning for mental health disorder diagnosis, it
is worth mentioning that deep learning has also been used in other use cases such as in vaccine discovery for
SARS-CoV-2 [59].

2.3 Efficient neural network synthesis

Next, we summarize the main synthesis approaches for obtaining compact DNN models. Conventional synthesis
methods are based on the use of efficient building blocks. For example, MobileNetV2 [46] leverages inverted
residual blocks to reduce model size and computations significantly. Wu et al. [55] use shift-based operations
rather than convolution layers to significantly reduce computational costs of the model. The main drawback of
such approaches is the need for considerable design insight and trial-and-error process to design such efficient
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building blocks. Network compression is another approach for the design of efficient models. It removes the
need for design insights. Network pruning is a widely used method that eliminates weights or filters that do not
enhance model performance. Han et al. [22] have shown the effectiveness of pruning in removing redundancy in
CNNs and multilayer-perceptron architectures. Grow-and-prune DNN synthesis uses network growth followed
by network pruning in an iterative process to improve model performance while ensuring its compactness
[14, 27].

Another recent approach relies on the use of reinforcement learning (RL) to search for DNN architectures in
an automated flow. It is known as neural architecture search (NAS) [63]. NAS generally uses a controller, e.g.,
an RNN, to iteratively generate candidate architectures in the search process. The RL controller is improved
based on candidate performance. As an example, MnasNet [52] uses an RL-based approach to develop efficient
DNNs for mobile platforms. However, the downside of the RL-based NAS approach is that it is computationally
intensive. FBNet [54] uses the Gumbel softmax function to optimize weights and connections using a single
objective function. NEAT [49] uses evolutionary algorithms to generate optimized and increasingly complex
architectures over multiple generations. Combining efficient evolutionary search algorithms with various
performance predictors, e.g., for accuracy, energy, and latency, is another approach for synthesizing accurate
yet compact CNNs and DNNs [15, 24].

2.4 Wearable medical sensors

Due to recent developments in low-power sensor design and efficient wireless communication, battery-powered
WMSs are becoming ubiquitous. More than 123 million WMSs were sold worldwide in 2018. This number is
projected to grow to 1 billion by the end of 2022 [2]. WMSs can track different aspects of human health including
heart rate, body/skin temperature, respiration rate, blood pressure, EEG, electrocardiogram (ECG), and Galvanic
skin response (GSR) [5]. Furthermore, the number of physiological signals that can be measured using WMSs
keeps growing every year.

WMSs have begun to be used in many smart healthcare applications. CodeBlue [33] is a sensor network
that collects vital health signs and transmits them to the healthcare provider. MobiHealth [53] is a WMS-based
body-area network (BAN) that realizes an end-to-end mobile health monitoring platform. Yin et al. [61] use
WMSs for pervasive diagnosis of Type-I and Type-II diabetes. CovidDeep [25] is a WMS-based framework for
quick detection of SARS-CoV-2/COVID-19.

For data collection in MHDeep, we use an Empatica E4 smartwatch [1] to record a subset of patient’s
physiological signals. It is a wearable wireless device designed for comfortable, continuous, and real-time data
acquisition. We also use a smartphone to simultaneously record signals related to motion information and
environmental variables. Because the DNNs developed for diagnosing various mental health conditions can
reside on the smartphone, use of a smartwatch/smartphone-based BAN can enable accurate, yet convenient,
disease diagnosis and continuous healthcare monitoring.

3 METHODOLOGY

In this section we describe various parts of the MHDeep framework. First, we give an overview of our approach.
Then, we discuss the data collection and preparation process, synthetic data generation, and grow-and-prune
DNN synthesis.

3.1 The MHDeep framework

We illustrate the MHDeep framework in Fig. 2. The input data are derived from the physiological signals
collected using various WMSs in the smartwatch and smartphone in a non-invasive, passive, and efficient
manner. The list of collected data streams include GSR, skin temperature (ST), inter-beat interval (IBI), and
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3-way acceleration (tri-axial accelerometer) from the smartwatch. In addition, some information related to the
motion patterns of the user and ambient information are collected using smartphone sensors. This includes
ambient temperature, gravity, acceleration, and angular velocity. After sensor data collection, the collected
signals are synchronized, aggregated, and merged into a comprehensive data input for subsequent analysis. To
enhance the accuracy of subsequent analysis and improve noise tolerance, we normalize the data. The process
of data collection and preparation is discussed in more detail in Section 3.2. When the size of the training
dataset is small, it can be useful to generate a synthetic dataset from the same probability distribution as the
real training dataset. MHDeep leverages Gaussian mixture model (GMM)-based density estimation to generate
the synthetic data. Then, it uses grow-and-prune DNN synthesis to generate inference models that are both
accurate and computationally efficient. Section 3.3 discusses the MHDeep DNN synthesis process in detail.
MHDeep generates DNN architectures that are efficient enough to be deployed on the edge devices such as
smartphones or smartwatches. Section 3.4 discusses the inference process of the MHDeep DNN models for
diagnosis and daily monitoring of mental health issues.
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Fig. 2. Schematic diagram of the MHDeep framework.

3.2 Data collection and preparation

We collected WMS data from a total of 74 adult participants at the Hackensack Meridian Health Carrier Clinic,
Belle Mead, New Jersey. The participants were diagnosed by medical professionals at the clinic. The 74 par-
ticipants comprised the following four categories: 25 healthy participants (no mental health disorder), 23
participants with bipolar disorder, 10 participants with major depressive disorder, and 16 participants with
schizoaffective disorder. The experimental procedure for data collection and analysis was approved by the Insti-
tutional Review Board of Princeton University. The physiological signals of the participants were captured by a
commercially-available Empatica E4 smartwatch [1] and a Samsung Galaxy S4 smartphone, as shown in Fig. 3.
First, we collected data from an extensive range of sensors embedded in both the smartwatch and smartphone.
We analyzed the mean value and standard deviation of collected data from each sensor for different cohorts. We
identified a final set of eight sensors as being the most informative in terms of distinguishing between these four
cohorts. Table 1 summarizes the final set of data types that we used in this study. The physiological signals are
derived from WMSs embedded in the smartwatch. They include GSR that measures sympathetic nervous system
arousal, IBI that indicates the heart rate, ST that provides skin temperature readings, and 3-axis accelerometer
(Acc-W) that measures acceleration in the x, y, and z directions. The information collected from these sensors
is useful for detecting various mental disorders. For example, the electrodermal response can be used as a
feature to detect patients affected by depression disorder or to detect different mood disorders [47]. Bipolar
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disorder is associated with cardiac autonomic dysregulation [9] that has an impact on IBI. Skin temperature
can be used as a feature to detect stress [28] and bipolar [39] disorders. In addition to the physiological signals,
ambient and motion information is also captured using sensors in the smartphone. These include ambient
temperature (Temp), gravity (Grav), acceleration (Acc-P), and angular velocity (Vel). The motion and ambient
information may also be informative in detecting the mental state of the user. For example, Berle et al. [6]
show that motor activities of schizophrenic and depressed patients are significantly reduced. In addition to the
motion information, ambient temperature can also impact the mental state of the individual and affect the
severity of the mental disorder. Mullins et al. [38] argue that cold temperatures can reduce the adverse effect of
mental disorders, whereas hot temperatures can exacerbate them. In addition, it is worth mentioning that the
acceleration sensors in the smartphone and smartwatch have different sampling rates, and capture different
motion information.

Before data collection, all participants are informed about the experiment and are asked to sign a consent
form. The data collection setup consists of placing the Empatica E4 smartwatch on the wrist of the participant’s
non-dominant hand and placing the Samsung Galaxy S4 smartphone in the opposite front pocket. For all
participants, we maintain the same orientation for the phone. Data collection lasts around 1.5 hours, during
which time the participant is allowed to freely move around in the room with their on-body devices. During this
time, the smartwatch and smartphone continuously record and store physiological signals and ambient/motion
information. At the end of the data collection period, we remove the smartwatch from the patient’s wrist and
the smartphone from their pocket. We use the Empatica E4 Connect portal for smartwatch data retrieval. We
use a private Android application to download the smartphone data streams. All of the recorded data are
timestamped at the time of sampling.

Next, we preprocess the dataset for use in DNN training. We first synchronize the smartwatch and smartphone
data streams for each participant. This is necessary because the WMS data streams may vary in their start
times and frequencies. Then, we divide the data for each participant into 15-second windows. This window
size was chosen based on experiments with the validation set, as discussed later. Each 15-second window of
the combined smartwatch/smartphone data constitutes one data instance. There is no time overlap between
data instances. To obtain each data instance, we flatten and concatenate the data within the same time window
from both the smartwatch and smartphone. This results in a feature space of dimension 2325. The smartwatch
(smartphone) contributes 1575 (750) features. All the smartphone sensors have a sampling rate of 5Hz. In
addition, the smartwatch sensors include one data stream at 32Hz, two data streams at 4Hz, and one data
stream at 1Hz.

Because the participants are in a room during the data collection process, they do not enjoy a wide range
of motions, and hence the higher sampling rates for the smartphone sensors are not needed. In addition,
the Empatica E4 used for data collection is a medical-grade smartwatch that is designed to capture various
physiological signals with their optimal sampling rates. Although collecting data from more sensors at higher
sampling rates may provide more information, unnecessarily high sampling rates can lead to a decrease in
the battery life of the device. In addition, by targeting a window of 15 seconds for each data instance, we can
remedy the low sampling frequency of some of the sensors by considering multiple sensor readings in each
data instance.

For each classification task, because the number of individuals in each of the four categories (healthy and
three disorders) is small, we created three different data partitions for evaluation. We used circular shifts on a
list of numbers denoting patients in each category to create these three data partitions. The value of the stride
used for the circular shift is equal to the number of test individuals in each group (as explained later). The data
instances extracted from the individuals in each of the four groups (healthy, schizoaffective, depressive, and
bipolar) were divided into three sets: training, validation, and test. To evaluate the models on different unseen
patients, data instances included in the training, validation, and test sets came from different individuals, i.e.,
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Fig. 3. An Empatica E4 smartwatch (left) and Samsung Galaxy S4 smartphone (right) used in the data collection process.

Table 1. Data types collected in the MHDeep framework

Data type Sampling rate (Hz) Data source
Galvanic skin response (uS) 4 Smartwatch
Skin temperature (°C) 4 Smartwatch
Inter-beat interval (ms) 1 Smartwatch
Acceleration (x, y, z) 32 Smartwatch
Ambient temperature (°C) 5 Smartphone
Gravity (x, ¥, 2) 5 Smartphone
Acceleration (x, y, z) 5 Smartphone
Angular velocity (x, y, z) 5 Smartphone

no individual contributed data to more than one of these sets. Among the healthy participants, for each of
the three data partitions, data instances from 15 individuals (60% of the healthy participants) are selected
for the training set, from 5 individuals (20% of the healthy participants) for the validation set, and from the
remaining 5 individuals (20% of the healthy participants) for the test set. For individuals with bipolar disorder,
the training, validation, and test sets contain data instances from 13, 5, and 5 participants, respectively. Among
the participants who had major depressive disorder, data instances from 6 participants are selected for the
training set and from 2 participants each for the validation and test sets. For individuals with schizoaffective
disorder, the training, validation, and test sets include data instances from 10, 3, and 3 participants, respectively.

We create the final dataset for each binary classification task (healthy vs. the mental health disorder) by
combining the training, validation, and test sets of the two classes involved in that task. We use SMOTE [10] to
up-sample data instances from the minority class. The up-sampling is applied only to the training set. Table 2
shows the number of instances for each classification task for all three data partitions.
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Table 2. Details of various datasets (MDD: major depressive disorder).

Classification task ~ Data partition Training instances Validation instances Test set
(#individuals) (#individuals) (#individuals)
Healthy vs. Bipolar 1 14828 (28) 3582 (10) 3754 (10)
Healthy vs. MDD 1 14828 (21) 2414 (7) 2515 (7)
Healthy vs. Schizo. 1 14828 (25) 2789 (8) 3047 (8)
Healthy vs. Bipolar 2 13330 (28) 3922 (10) 3582 (10)
Healthy vs. MDD 2 13330 (21) 3266 (7) 2414 (7)
Healthy vs. Schizo. 2 13330 (25) 3773 (8) 2789 (8)
Healthy vs. Bipolar 3 12054 (28) 4102 (10) 3922 (10)
Healthy vs. MDD 3 12054 (21) 3088 (7) 3266 (7)
Healthy vs. Schizo. 3 12054 (25) 3522 (8) 3773 (8)

3.3  MHDeep DNN synthesis

Fig. 4 shows the DNN architectures used in the MHDeep framework. The architectures receive the input data
at the bottom and make their diagnostic decisions at the top. For the healthy vs. major depressive disorder
and healthy vs. schizoaffective disorder binary classification tasks, the DNN architecture has four layers with
awidth of 256, 128, 128, and 2, respectively. For the healthy vs. bipolar disorder binary classification task, we
use an DNN architecture with five layers with a width of 256, 128, 64, 32, and 2, respectively. We selected these
architectures by verifying the performance of various DNNs (with different numbers of layers and number of
neurons per layer) on the validation set and picking the best-performing one. These architectures are initially
fully-connected.

We then apply three sequential steps: (i) synthetic data generation to mimic the distribution of the real
training data, (ii) pre-training of the DNN architectures with the synthetic data, and (iii) grow-and-prune DNN
synthesis to reduce the redundancy of the model while improving its performance. Next, we discuss each step
in more detail.

(1) Synthetic data generation: In this step, we generate a synthetic dataset that mimics the probability
distribution of the real training dataset. Fig. 5 illustrates the synthetic data generation process. We utilize
the approach proposed in [26] in order to alleviate the need for large datasets to train DNN architectures.
We first use GMM to estimate the density of the training dataset. We optimize the number of mixtures in
the GMM by monitoring the likelihood of validation data. We choose the number of components that
maximizes the following criterion:

N* =arg max (GMMy (x).score(Xyaridarion))
N
Finally, we train the optimal GMM model with N* mixtures on the combination of the training and
validation datasets. By sampling this model, we are able to generate the synthetic data:
X* = GMMpy+ (Xtora1).sample()

For our experiments, we generate 100,000 synthetic data instances. The final step is labeling of the
synthetic dataset. We use a traditional machine learning model for this purpose. We evaluate various
models, e.g., the support vector machine and random forest models based on different splitting criteria
(such as Gini index and entropy), and different depth limits on the decision trees, on the validation set.
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The model with the highest accuracy is used to label the synthetic data. Note that because synthetic data
are only used to pre-train an DNN (with subsequent training with real data), the accuracy of the support
vector machine or random forest model is not a critical factor.

DNN pre-training: In this step, we use the labeled synthetic data to obtain a prior on the weights of
the DNN architecture by pre-training them. The intuition behind this step is that pre-training the DNN
provides a suitable inductive bias to the parameters of the DNN. As a result, we can commence with the
final training stage with a better weight initialization. Therefore, it alleviates the need for large training
datasets. By using this methodology, we obtain models that are more accurate than both the traditional
machine learning model used for labeling and the DNN model trained only on the real dataset.
Grow-and-prune DNN synthesis: MHDeep uses a grow-and-prune DNN synthesis paradigm to train the
models. Algorithm 1 summarizes this process. It uses a mask-based approach. For each weight matrix,
there is an associated binary mask of the same size that is used to disregard dormant connections in the
architecture. It applies magnitude-based pruning and full growth to fully-connected DNNss iteratively. For
magnitude-based pruning, a hyperparameter « is used to depict the pruning ratio. We prune a connection
if and only if its weight is in the lowest a * 100 percent of the weights in its associated layer. Finally, for
the pruned connections, we set the weight and its binary mask both to 0. Because connection pruning is
an iterative process, we retrain the network to recover its performance after each pruning iteration. We
then grow the network to restore all its connections. In our experiments, after each architecture-changing
operation, we train the DNN for 20 epochs. In addition, we set the number of iterations to 5. We evaluate
the model on the validation set after each epoch, and we record the learned weights and masks of the
pruned model with the highest validation accuracy.
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Algorithm 1 Grow-and-prune synthesis

Input: Pre-trained DNN architecture; iteration number numlIterations; weight matrix W € RM*N. mask
matrix Mask of the same dimension as the weight matrix; a: pruning ratio

best-validation-acc =0
for all layers in the DNN do
t = (@ x MN)"" largest element in | W |
for all Wij do
if |w;j| < t then
Mask,-j =0
end if
end for
W=We® Mask
end for
Train DNN for given #epochs
validation-acc = evaluate DNN on validation set
if validation-acc > best-validation-acc then
best-validation-acc = validation-acc
Save the DNN
end if
for numlIterations do
for all layers in the DNN do
Maskp.min =1
end for
Train DNN for given #epochs
for all layers in the DNN do
t = (@ x MN)"" largest element in | W|
for all w,-j do
if |w;j| < r then
Mask,-j =0
end if
end for
W=We®Mask
end for
Train DNN for given #epochs
validation-acc = evaluate DNN on validation set
if validation-acc > best-validation-acc then
best-validation-acc = validation-acc
Save the DNN
end if
end for
Output: Best architecture with the weight and mask matrices
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Fig. 5. Schematic diagram of the MHDeep synthetic data generation process.

3.4 MHDeep inference process

The trained DNN models can be used for diagnosis or daily monitoring of the mental state of the user based on
a collection of physiological signals and ambient information during the day. The collected data streams are
processed based on the step explained in Section 3.2. We feed the processed data to the MHDeep DNN models
that predict the mental health condition of the user. This information can then be sent to the physician for early
treatment.

4 IMPLEMENTATION DETAILS

In this section, we give an overview of the hardware and software packages we used in the implementation of
the MHDeep framework. We have implemented the data processing and preparation parts of the MHDeep
framework in Python and the MHDeep DNN synthesis framework in PyTorch. We use the Nvidia Tesla P100 data
center accelerator for DNN training and evaluation. We use the cuDNN library to accelerate GPU processing.
For training, we use a stochastic gradient descent (SGD) optimizer, with a learning rate of 5e-4 and a batch
size of 256. We use 100,000 synthetic data instances to pre-train the network architecture. In the grow-and-
prune synthesis phase, we train the network for 20 epochs each time the architecture changes. We use an
SGD optimizer, with an initialized learning rate of 1e-4 that we halve in each succeeding iteration. We apply
network-changing operations over five iterations.

5 EVALUATION

In this section, we analyze the performance of MHDeep DNN models for diagnosing three mental health
disorders. This entails three binary classifications: (i) schizoaffective disorder vs. healthy individuals, (ii) major
depressive disorder vs. healthy individuals, and (iii) bipolar disorder vs. healthy individuals. For each classifi-
cation task, we use three different data partitions, each partition with data instances obtained from different
individuals in the training, validation, and test sets.

The MHDeep DNN models are evaluated with four different metrics: test accuracy, false positive rate (FPR),
false negative rate (FNR), and F1 score. Accuracy measures overall classification performance. It is simply the
ratio of all the correct predictions on the test data instances and the total number of such instances. FPR and
FNR measure how often healthy individuals are declared to have the corresponding mental health condition
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and vice versa, respectively. In addition to these four metrics, we also report the TPR (sensitivity) and the TNR
(specificity) values that are equal to 1 minus the FNR and FPR values, respectively.

We conduct two different performance evaluations: at the data instance level and the patient level. First, we
report the performance of the MHDeep DNN models in detecting each of the three mental health disorders at
the data instance level. Next, we evaluate the accuracy of the models in detecting mental health disorders at the
patient level.

5.1 MHDeep performance evaluation at the data instance level

We first analyze the performance of the three binary classifiers. We begin by training DNN models on features
obtained from subsets of the eight data categories presented in Table 1. We analyze all the subsets of the eight
data categories and report results for the top models. Because there are eight data categories, there are 256
subsets, with one being the null subset. We evaluated the remaining 255 subsets. This helps distinguish the
impact of each data category and to find the most effective combination of categories for each classification
task. Next, we highlight the best-performing data categories for each of the three classification tasks. We then
compare the performance of MHDeep DNNs with that of traditional machine learning models. Furthermore,
we conduct an ablation study that shows the impact of each step of MHDeep DNN training.

Table 3 shows the results of classification between healthy and schizoaffective data instances. The best
data category subset, in this case, achieves an average test accuracy of 90.4%. We also report test accuracy,
FPR, FNR, TPR, TNR, and F1 score for each of the three data partitions. The model reaches the highest test
accuracy of 93.3% on the second data partition. Furthermore, for the healthy instances, the top model achieves
a low average FPR of 6.5%, demonstrating its effectiveness in avoiding false alarms. For the schizoaffective
instances, the model achieves an average FNR of 16.9%, indicating reasonable effectiveness in raising alarms
when schizoaffective disorder does occur. We report the number of parameters (#params) and floating-point
operations (FLOPs) required for each model. We also compare #params and FLOPs of the models with those of
the fully-connected baselines. As can be seen, using the grow-and-prune DNN synthesis approach enables us
to reduce both #params and FLOPs, leading to a reduction in memory and computational requirements.

We present the results for classification between healthy and major depressive disorder instances in Table 4.
The data category subset with the best performance achieves an average test accuracy of 87.3%. This model
achieves the highest accuracy of 91.2% on the second data partition. It achieves an average FPR (FNR) of 6.8%
(29.3%).

Table 5 presents the results for classification between healthy and bipolar disorder instances. In this case, the
model trained on the best data category subset achieves an average test accuracy of 82.4%, with an FPR (FNR)
of 16.7% (20.7%).

As the results for these three classification tasks show, there is some variability in test performance on the
three data partitions. Because the number of represented individuals in each classification task is limited and
each partition consists of different individuals in the training, validation, and test sets, performance variability
on the test set can be expected. Hence, we report average values across the three data partitions for each metric.
In addition, by comparing the results of the three classification tasks, we can infer that it is more difficult to
detect bipolar disorder than the other two disorders. This may be due to the nature of the bipolar disorder,
which may induce various mood changes. As a result, the physiological signals of the patient can change during
these changes of moods, leading to a more difficult diagnosis. It is also worth mentioning that the subset of data
categories that leads to the best-performing models for each classification task differs from each other. This
points to the need for accurate sensor subset selection.

Next, we compare the performance of our methodology with that of traditional machine learning methods.
We present the results for the first data partition in Table 6. We report the results for two data categories for each
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schizoaffective disorder data instances

Table 3. Test accuracy, FPR, FNR, and F1 score (all in %) for top data categories for classification between healthy and

Data categor Data #Params FLOPs A FPR FNR F1 Scor.
ata category partition (compression) (compression) e (TNR) (TPR) core
(Acc-P, Temp, Vel, 1 275.0k (2.1x)  549.5k (2.0x) 91.2 11.4(88.6) 5.8(94.2) 89.5
Acc-W, GSR, IBI) 2 300.0k (1.9x)  599.5k (1.9x) 814 6.6(93.4) 37.8(62.2) 72.0
3 275.0k (2.1x)  549.5k (2.0x) 87.3 2.4(97.6) 34.1(65.9) 84.2
Average 86.6 6.8(93.2) 259 (74.1) 81.9
(Acc-P, Temp, Vel, 1 200.0k (2.8x)  399.5k (2.8x) 90.5 13.0(87.0) 4.4(95.6) 89.3
Acc-W, GSR) 2 300.0k (1.9x)  599.5k (1.8x) 93.3 4.0(96.0) 13.3(86.7) 89.8
3 250.0k (2.3x)  499.5k (2.2x) 87.5 2.5(97.5) 32.9(67.1) 77.9
Average 90.4 6.5(93.5) 16.9(83.1) 85.7
(Acc-PB, Temp, Grav, Vel, 1 300.0k (2.1x)  599.5k (2.0x) 88.3 14.4(85.6) 7.7(92.3) 86.8
Acc-W, GSR, IBI) 2 350.0k (1.8x)  699.5k (1.8x) 82.6 5.9(94.1) 45.7(54.3) 66.3
3 300.0k (2.1x)  599.5k (2.0x) 88.7 3.9(96.1) 26.4(73.6) 81.1
Average 86.5 8.1(91.9) 26.6(73.4) 78.1

depressive disorder data instances

Table 4. Test accuracy, FPR, FNR, and F1 score (all in %) for top data categories for classification between healthy and major

Dat " Data #Params FLOPs A FPR FNR F1S
ata category partition (compression) (compression) ce. (TNR) (TPR) core

(Temp, Grav, Vel, GSR) 1 75.0k (2.7%) 149.5k (2.4x) 89.0 4.6(95.4) 26.7(73.3) 79.4

2 120.0k (1.7x) 239.5k (1.5%x) 90.5 4.5(95.5) 21.7(78.3) 82.7

3 150.0k (1.3x) 299.5k (1.2x) 81.7 12.7(87.3) 37.9(62.1) 60.2
Average 87.1 7.3(92.7) 28.8(71.2) 74.1
(Acc-P, Grav, Vel, GSR) 1 120.0k (2.0%) 239.5k (1.8x) 88.2 6.5(93.5) 24.8(75.2) 78.7

2 145.0k (1.6%) 289.5k (1.5x) 91.2 1.9(98.1) 25.7(74.3) 83.0

3 185.0k (1.3%) 369.5k (1.2x) 82.4 11.9(88.1) 37.5(62.5) 61.3
Average 87.3 6.8(93.2) 29.3(70.7) 74.3

classification task. As we can see, our methodology outperforms traditional machine learning models in all
cases. This points to the difficulty of distilling information from raw data using traditional machine learning
models and highlights the superiority of our methodology in diagnosing various diseases. It is worth mentioning
that we achieved similar results on the second and third data partitions.

We also performed an ablation study to analyze the impact of three training methods on the final performance,

including training only on real data, pre-training with synthetic data, and grow-and-prune synthesis. We present
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Table 5. Test accuracy, FPR, FNR, and F1 score (all in %) for top data categories for classification between healthy and bipolar
disorder data instances

Data categor Data #Params FLOPs A FPR FNR F1 Scor.
ata category partition (compression) (compression) e (TNR) (TPR) core

(Acc-P, Temp, Grav, Vel, 1 500.0k (1.2x)  999.5k (1.2x) 76.1 47.1(52.9) 2.8(97.2) 81.0
Acc-W, IBI, ST) 2 480.0k (1.3x)  959.5k (1.3x) 81.4 1.0(99.0) 34.3(65.7) 78.9

3 400.0k (1.6x)  799.5k (1.5x) 89.8 2.1(97.9) 25.1(74.9) 83.8
Average 82.4 16.7(83.3) 20.7(79.3) 81.2
(Temp, Grav, Vel, 1 490.0k (1.2x) ~ 979.5k (1.1x) 75.6 47.1(52.9) 3.8(96.2) 80.5
Acc-W, GSR, IBI) 2 450.0k (1.3x)  899.5k (1.2x) 81.6 0.9(99.1) 34.2(65.8) 79.0

3 380.0k (1.5x)  759.5k (1.5x) 87.0 2.1(97.9) 33.0(67.0) 78.4
Average 81.4 16.7(83.3) 23.7(76.3) 79.3

performance results for the first data partition in Table 7. For each classification task, we report the performance
of two data categories. We can see that using the synthetic dataset to pre-train the weights of the model helps
improve performance in most cases, thanks to a better initialization point for the final training process. In
addition, the application of grow-and-prune synthesis yields models specialized for the task at hand and not
only results in more compact models (as shown in Tables 3, 4, 5), it improves the performance of the models as
well. It is worth mentioning that similar results were obtained on the other two data partitions.

5.2 MHDeep performance evaluation at the patient level

Next, we show patient-level diagnostic test accuracy. We use the most accurate model from among the models
discussed above for each classification task. Fig. 6 shows the results. In these graphs, we plot patient-level
test accuracy vs. the duration of sensor data collection needed for inference. Prediction is performed for each
patient by simply taking the majority of the predicted labels over all data instances in the given sensor data
collection duration. As discussed earlier, each data instance is composed of a 15-second window of sensor
data. We step up the data duration size by 2 minutes each time. Thus, we add eight data instances in each
2-minute window. By predicting the label for each participant, we define the final test accuracy as the ratio of
the participants that are correctly diagnosed over the number of participants in the test set. As we can see, the
models reach 100% test accuracy after a certain point for distinguishing healthy individuals from those with
schizoaffective and major depressive disorders. In addition, the best model for classification between healthy
and bipolar disorder individuals reaches 90.0% patient-level accuracy. Table 8 shows the minimum sensor data
collection duration needed to reach saturation accuracy. The durations are 40, 16, and 22 minutes for healthy vs.
schizoaffective disorder, healthy vs. major depressive disorder, and healthy vs. bipolar disorder classifications,
respectively. Not surprisingly, these results indicate that it is easier to obtain higher test accuracies at the patient
level than at the data instance level because the former is simply based on taking the majority of the predictions
over all instances in the data duration.

Although the MHDeep DNNs have been evaluated on the same platform we used for training, they can be
encapsulated in a smartphone app for diagnosis of mental disorders. Through the MHDeep app, the user can
be instructed to wear the Empatica E4 smartwatch and correctly position the smartphone before data collection
begins. The MHDeep preprocessing pipeline can be used to normalize the data using the minimum and
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Table 6. Comparison with machine learning models on first data partition

Classification Task Method Accuracy FPR FNR Fl1 score

(Data category) (%) (%) (%) (%)
Healthy vs. Schizo. SVM 79.0 31.8 5.7 79.0
(Acc-P, Temp, Vel, Decision tree 68.9 44.0 129 68.8
Acc-W, GSR, IB]) Random forest 71.9 426 7.3 71.9
k-nearest neighbor (k=6) 72.4 379 128 72.5
Naive Bayes 70.4 30.0 29.1 70.0
AdaBoost 74.9 304 17.7 74.7

-~ OurDNN 91.2 114 58 895
Healthy vs. Schizo. SVM 77.2 339 7.0 77.2
(Acc-PB, Temp, Vel, Decision tree 68.3 43.1 154 68.3
Acc-W, GSR) Random forest 67.1 48.2 11.0 67.0
k-nearest neighbor (k=15) 75.2 344 111 75.2
Naive Bayes 70.0 30.1 299 69.9
AdaBoost 75.5 29.6 17.2 75.4

~~ OwDNN 905  13.0 44 893
Healthy vs. MDD SVM 74.8 15.7 48.6 68.4
(Temp, Grav, Vel, GSR)  Decision tree 52.4 49.1 439 50.4
Random forest 68.7 255 45.6 63.6
k-nearest neighbor (k=12) 67.4 30.2 384 63.7
Naive Bayes 67.0 358 26.3 64.9
AdaBoost 56.1 46.3 38.0 54.2

~~ OurDNN 89.0 46 267 794
Healthy vs. MDD SVM 75.5 16.8 43.4 70.0
(Acc-P, Grav, Vel, GSR) Decision tree 52.7 425 589 48.4
Random forest 70.0 245 435 65.1
k-nearest neighbor (k=12) 62.6 36.2 40.4 59.4
Naive Bayes 61.2 45.1 233 60.1
AdaBoost 54.4 48.5 38.7 52.7

~ OwDNN 882 65 248 787
Healthy vs. Bipolar SVM 68.1 476 17.6 67.1
(Acc-P, Temp, Grav, Vel, Decision tree 63.8 48.0 255 63.1
Acc-W, IB], ST) Random forest 61.3 544 243 60.1
k-nearest neighbor (k=10) 70.9 525 7.9 68.8
Naive Bayes 69.1 40.7 219 68.6
AdaBoost 60.1 59.7 21.9 58.1

-~ OurDNN 761 471 28 810
Healthy vs. Bipolar SVM 71.4 43.0 155 70.5
(Temp, Grav, Vel, Decision tree 64.3 52.3 20.6 63.0
Acc-W, GSR, IB]) Random forest 65.8 54.7 15.6 63.9
k-nearest neighbor (k=7) 64.6 50.1 22.1 63.5
Naive Bayes 61.0 416 36.6 60.9
AdaBoost 67.1 424 243 66.6

~~ OwDNN 756 471 38 805
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Table 7. Impact of different training methods on the performance of the model

Classification Task Trainine method Accuracy FPR (TNR) FNR (TPR)
(Data category) 8 (%) (%) (%)
Healthy vs. Schizo. Real training dataset 87.0 18.4 (81.6) 5.2(94.8)
(Acc-P, Temp, Vel, Real+synthetic training dataset 89.6 6.1 (93.9) 20.8 (79.2)
Acc-W, GSR, IBI) Real+synthetic training dataset 91.2 11.4 (88.6) 5.8(94.2)
+ grow-prune
Healthy vs. Schizo. Real training dataset 87.8 18.2 (81.8) 3.7(96.3)
(Acc-B, Temp, Vel, Real+synthetic training dataset 86.2 19.6 (80.4) 5.5(94.5)
Acc-W, GSR) Real+synthetic training dataset 90.5 13.0 (87.0) 4.4 (95.6)
+ grow-prune
Healthy vs. MDD Real training dataset 85.0 7.7(92.3) 33.1(66.9)
(Temp, Grav, Vel, GSR)  Real+synthetic training dataset 85.8 10.4 (89.6) 23.6(76.4)
Real+synthetic training dataset 89.0 4.6(95.4) 26.7(73.3)
+ grow-prune
Healthy vs. MDD Real training dataset 84.4 11.3(88.7) 26.0 (74.0)
(Acc-P, Grav, Vel, GSR) Real+synthetic training dataset 85.4 8.2(91.8) 30.4 (69.6)
Real+synthetic training dataset 88.2 6.5 (93.5) 24.8(75.2)
+ grow-prune
Healthy vs. Bipolar Real training dataset 74.6 48.9 (51.1) 3.9(96.1)
(Acc-B, Temp, Grav, Vel, Real+synthetic training dataset 75.9 47.4 (52.6) 2.8(97.2)
Acc-W, IBI, ST) Real+synthetic training dataset 76.1 47.1(52.9) 2.8(97.2)
+ grow-prune
Healthy vs. Bipolar Real training dataset 74.4 49.9 (50.1) 3.5(96.5)
(Temp, Grav, Vel, Real+synthetic training dataset 75.3 46.7 (53.3) 4.6 (95.4)
Acc-W, GSR, IBI) Real+synthetic training dataset 75.6 47.1(52.9) 3.8(96.2)

+ grow-prune

maximum values used during training and divide the data into 15-second window data instances. Finally, using
DNN models for various mental disorders, we can obtain average prediction probabilities. We can diagnose
the mental disorder by comparing this average with a user-defined threshold. The MHDeep app would need a
limited amount of battery energy. From the study done in [35], we roughly estimate between 0.5 to 1 Watt of
battery power for the application. This is based on a range of power estimates of smartphone apps under various
categories, such as educational, social media, and entertainment, studied in [35]. As explained earlier, we need
40 minutes of sensor data collection to reach patient-level saturation accuracy for the healthy vs. bipolar
disorder diagnosis. As a result, assuming that MHDeep app processing takes 40 minutes in the worst case and
smartphone battery works at 3.8V, this translates to 88-175 mAh energy consumption. For a smartphone, such
as Samsung Galaxy S8+ with a battery with 3500 mAh capacity, this results in 2.5% to 5.0% battery consumption
for the app. In addition, each DNN inference pass takes 0.6 milliseconds in our desktop implementation. As a
result, DNN inference for 160 data instances takes 0.1 seconds. In comparison, the sensor data collection takes
40 minutes or 2400 seconds. Even taking into account that DNN inference may take longer on a smartphone, it
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Table 8. Minimum sensor data collection duration (in minutes) needed to reach saturation patient-level accuracy (in %) for
each classification task

Classification Time Saturation accuracy
(mins.) (%)
Healthy vs. Schizoaffective disorder 40 100
Healthy vs. Major depressive disorder 16 100
Healthy vs. Bipolar disorder 22 90.0

would be considerably shorter than the duration of data collection. As a result, the energy consumption of the
MHDeep app will be dominated by other components of the smartphone such as Bluetooth connectivity and
the display.
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Fig. 6. Patient-level test accuracy vs. sensor data duration needed for classification between (a) healthy and schizoaffective
disorder individuals, (b) healthy and major depressive disorder individuals, and (c) healthy and bipolar disorder individuals.

We also report results from some of the related works on use of various machine learning methods for
detection of mental health disorders. The results are presented in Table 9. Because these works use different
data sources and solve different problems as compared to MHDeep, the goal of this comparison is only to
highlight a few related works that target use of machine learning in the mental health domain, the main method,
data source, and duration they employ, as well as their main results. As opposed to these methods, MHDeep
does not rely on manual feature extraction from various data sources. It directly works on raw sensor data.
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Table 9. Comparison with related works

Mental Method Dat‘a Data sources Result
disorder duration
. Random Several
Depression forest [44] months Instagram photos 70% accuracy
H hesi h ion in physical
Depression ypo thesis 1 week Accelerometer S o.w.ed.reductlon n physica
testing(40] activity in depressed patients
MDD MHDeep 1.5hours Physiological, motion, ambient = 100% patient-level accuracy
Bipolar Naive 12 weeks Phone call logs, microphone 76% accurac
p Bayes [21] 8 p 0 y
Naive 12 weeks GPS, accelerometer 80% accurac
Bayes [20] ’ ° Y

Accelerometer, microphone,

. . 85% accurac
questionnaire Y

Bagging [34] 12 weeks

MHDeep  1.5hours Physiological, motion, ambient 90% patient-level accuracy

Schizophrenia Random Several

spectrum forest [7] months Social media posts and messages 0.76 area-under-curve (AUC)

Schizoaffective = MHDeep 1.5hours Physiological, motion, ambient =~ 100% patient-level accuracy

6 DISCUSSION

MHDeep combines efficient DNNs with commercially available WMSs to diagnose various mental health
disorders. Although several works address mental health problem detection using machine learning, MHDeep
is a solution that focuses on an easy-to-use system that can monitor the daily mental health state of the user
through their physiological signals, as well as motion and ambient information. The diagnostic decisions can
be sent to a health server from where medical professionals can access the information. This can enable them
to quickly intervene during severe episodes of the disorder.

Many mental disorders, such as depression, have different stages with different severities. The progress
of such mental health problems can impact the patient’s life and health in different ways. As a result, it may
be useful if the model can predict disease progression over time. Our framework can be extended to predict
the progress of mental health disorders by utilizing longitudinal WMS data collected in the training stage.
Furthermore, by accumulating more data from each individual, we can synthesize patient-specific models that
are specifically designed based on their data. We can obtain such models by fine-tuning the trained general
models based on accumulated data from the specific patient.

Diagnosis of mental health disorders is often based on patient’s self-report and answers to a questionnaire
designed to detect each disorder. In the future, we can improve the performance of MHDeep by adding a
specifically designed questionnaire to the data categories. In addition, adding features based on other WMSs
such as blood pressure may also help enhance model performance.
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7 CONCLUSION

In this article, we proposed a framework called MHDeep that combines data obtained from commercially
available WMSs with the knowledge distillation power of DNNs for continuous and pervasive diagnosis of three
main mental health disorders: schizoaffective, major depressive, and bipolar. MHDeep uses a synthetic data
generation module to address the lack of large datasets. We trained the DNN models by using iterative network
growth and pruning to learn both the weights and architecture during the training process. We evaluated
MHDeep based on data collected from 74 individuals. It achieves patient-level accuracy of 100%, 100%, and
90.0%, using 40, 16, and 22 minutes of sensor data collected in the inference stage, for classification between
healthy and schizoaffective disorder individuals, healthy and major depressive disorder individuals, and healthy
and bipolar disorder individuals, respectively. The MHDeep models were also shown to be computationally
efficient. Thus, MHDeep can be employed for pervasive diagnosis and daily monitoring while offering high
computational efficiency and accuracy.
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