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Abstract—The novel coronavirus (SARS-CoV-2) has led to
a pandemic. The current testing regime based on Reverse
Transcription-Polymerase Chain Reaction for SARS-CoV-2 has
been unable to keep up with testing demands, and also suffers
from a relatively low positive detection rate in the early stages
of the resultant COVID-19 disease. Hence, there is a need for an
alternative approach for repeated large-scale testing of SARS-
CoV-2/COVID-19. The emergence of wearable medical sensors
(WMSs) and deep neural networks (DNNs) points to a promising
approach to address this challenge. WMSs enable continuous and
user-transparent monitoring of physiological signals. However,
disease detection based on WMSs/DNNs and their deployment
on resource-constrained edge devices remain challenging prob-
lems. To address these problems, we propose a framework called
CovidDeep that combines efficient DNNs with commercially avail-
able WMSs for pervasive testing of the virus and the resultant
disease. CovidDeep does not depend on manual feature extrac-
tion. It directly operates on WMS data and some easy-to-answer
questions in a questionnaire whose answers can be obtained
through a smartphone application. We collected data from 87
individuals, spanning three cohorts including healthy, asymp-
tomatic (to detect the virus), and symptomatic (to detect the
disease) patients. We trained DNNs on various subsets of the fea-
tures automatically extracted from six WMS and questionnaire
categories to perform ablation studies to determine which sub-
sets are most efficacious in terms of test accuracy for a three-way
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classification. The highest test accuracy obtained was 98.1%. The
models were also shown to perform well on other performance
measures, such as false positive rate, false negative rate, and F1
score. We augmented the real training dataset with a synthetic
training dataset drawn from the same probability distribution to
impose a prior on DNN weights and leveraged a grow-and-prune
synthesis paradigm to learn both DNN architecture and weights.
This boosted the accuracy of the various DNNs further and simul-
taneously reduced their size and floating-point operations. This
makes the CovidDeep DNNs both accurate and efficient, in terms
of memory requirements and computations. The resultant DNNs
are embedded in a smartphone application, which has the added
benefit of preserving patient privacy.

Index Terms—COVID-19 test, deep neural network (DNN),
grow-and-prune synthesis, Internet of Medical Things, SARS-
CoV-2, smart healthcare, synthetic data generation, wearable
online computing, wearable systems.

I. INTRODUCTION

SARS-COV-2, also known as novel coronavirus, emerged in
China and soon after spread across the globe. The World

Health Organization (WHO) named the resultant disease
COVID-19. COVID-19 was declared a pandemic on March
11, 2020 [1]. In its early stages, the symptoms of COVID-19
include fever, cough, fatigue, and myalgia. However, in more
serious cases, it can lead to shortness of breath, pneumonia,
severe acute respiratory disorder, and heart problems, and may
lead to death [2]. It is of paramount importance to detect which
individuals are infected at as early a stage as possible in order
to limit the spread of disease through quarantine and con-
tact tracing. In response to COVID-19, governments around
the world issued social distancing and self-isolation orders.
This led to a significant increase in unemployment across
diverse economic sectors. As a result, COVID-19 triggered
an economic recession in a large number of countries [3].

Reverse Transcription-Polymerase Chain Reaction (RT-
PCR) is currently the gold standard for SARS-CoV-2 detec-
tion [4]. This test is based on viral nucleic acid detection in
sputum or nasopharyngeal swab. Although it has high speci-
ficity, it has several drawbacks. The RT-PCR test is invasive
and uncomfortable, and non-reusable testing kits have led to
significant supply chain deficiencies. SARS-CoV-2 infection
can also be assessed with an antibody test [5]. However, anti-
body titers are only detectable from the second week of illness
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onwards and persist for an uncertain length of time. The anti-
body test is also invasive, requiring venipuncture which, in
combination with a several-day processing time, makes it less
ideal for rapid mass screening. In the current economic and
social situation, there is a great need for an alternative SARS-
CoV-2/COVID-19 detection method that is easily accessible
to the public for repeated testing with high accuracy.

To address the above issues, researchers have begun to
explore the use of artificial intelligence (AI) algorithms to
detect COVID-19 [6]. Initial work concentrated on CT scans
and X-ray images [4], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21]. A survey of such
datasets can be found in [22], [23]. These methods often
rely on transfer learning of a convolutional neural network
(CNN) architecture, pre-trained on large image datasets, on a
smaller COVID-19 image dataset. However, such an image-
based AI approach faces several challenges that include lack
of large datasets and inapplicability outside the clinic or hospi-
tal. Another work [24] shows that it is difficult to distinguish
COVID-19 pneumonia from influenza virus pneumonia in a
clinical setting using CT scans. Thus, the work in this area is
not mature yet.

CORD-19 [25] is an assembly of 59000 scholarly articles
on COVID-19. It can be used with natural language process-
ing methods to distill useful information on COVID-19-related
topics.

AI4COVID-19 [26] performs a preliminary diagnosis of
COVID-19 through cough sample recordings with a smart-
phone application. However, since coughing is a common
symptom of two dozen non-COVID-19 medical conditions,
this is an extremely difficult task. Nonetheless, AI4COVID-19
shows promising results and opens the door for COVID-19
diagnosis through a smartphone.

The emergence of wearable medical sensors (WMSs) offers
a promising way to tackle these challenges. WMSs can con-
tinuously sense physiological signals throughout the day [27].
Hence, they enable constant monitoring of the user’s health
status. Training AI algorithms with data produced by WMSs
can enable pervasive health condition tracking and disease
onset detection [28]. This approach exploits the knowl-
edge distillation capability of machine learning algorithms to
directly extract information from physiological signals. Thus,
it is not limited to disease detection in clinical scenarios.

We propose a framework called CovidDeep for daily detec-
tion of SARS-CoV-2/COVID-19 based on off-the-shelf WMSs
and compact deep neural networks (DNNs). It bypasses man-
ual feature engineering and directly distills information from
the raw signals captured by available WMSs. It addresses the
problem posed by small COVID-19 datasets by relying on
intelligent synthetic data generation from the same probabil-
ity distribution as the training data [29]. These synthetic data
are used to pre-train the DNN architecture in order to impose
a prior on the network weights. To cut down on the com-
putation and storage costs of the model without any loss in
accuracy, CovidDeep leverages the grow-and-prune DNN syn-
thesis paradigm [30], [31]. This not only improves accuracy,
but also shrinks model size and reduces the computation costs
of the inference process.

A. Novel Contributions of This Study

Next, we summarize the major contributions of this article:
• We propose CovidDeep, an easy-to-use, accurate, and

pervasive SARS-CoV-2/COVID-19 detection framework.
It combines features extracted from physiological sig-
nals using WMSs and simple-to-answer questions in a
smartphone application-based questionnaire with efficient
DNNs.

• It uses an intelligent synthetic data generation module to
obtain a synthetic dataset [29], labeled by decision rules.
The synthetic dataset is used to pre-train the weights of
the DNN architecture.

• It uses a grow-and-prune DNN synthesis paradigm that
learns both an efficient architecture and weights of the
DNN at the same time [30], [31].

• It provides a solution to the daily SARS-CoV-2/COVID-19
detection problem. It captures all the required physiological
signals non-invasively through comfortably-worn WMSs
that are commercially available.

• The CovidDeep DNNs are embedded in a smartphone
application (app) to enable edge inference.

The rest of the article is organized as follows. Section II
reviews background material. Section III describes the
CovidDeep framework. Section IV provides implementation
details. Section V presents experimental results. Section VI pro-
vides a short discussion on CovidDeep and possible directions
for future research. Finally, Section VII concludes the article.

II. BACKGROUND

In this section, we discuss background material related to
the CovidDeep framework. This includes recent methods for
synthesizing and training efficient DNN architectures, as well
as related work on smart healthcare platforms.

Use of efficient building blocks leads to compact
DNNs/CNNs and significantly reduces computational costs
and storage needs. For example, inverted residual blocks
used in MobileNetV2 [32] reduce the number of parameters
and the floating-point operations (FLOPs) greatly. In addi-
tion, spatial convolution is one of the most computationally
expensive operations in CNN architectures. To address this
issue, ShuffleNet-v2 [33] uses depth-wise separable convolu-
tions and channel-shuffling operations. Furthermore, Shift [34]
addresses this problem by using shift-based modules that com-
bine shifts and point-wise convolutions. Neural architecture
search (NAS) is also used in the literature to automatically
generate compact architectures. For example, FBNetV2 [35]
uses a differentiable NAS approach to synthesize compact
CNN architectures. Efficient performance predictors, e.g., for
accuracy, latency, and energy, are also used to accelerate the
DNN search process [36], [37]. FBNetV3 [38] also takes into
account the training recipe (i.e., training hyperparameters) in
NAS, leading to higher accuracy-recipe combinations.

DNN compression methods remove redundancy in DNN
models. Network pruning [39] removes redundancy from
both CNN and multilayer-perceptron architectures. ESE [40]
uses pruning to also remove redundancy in recurrent neural
networks. Dai et al. [30], [41] combine network growth
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Fig. 1. Schematic diagram of the CovidDeep framework (GSR: Galvanic skin response, Ox.: oxygen saturation, BP: blood pressure, DT/RF: decision
tree/random forest, NN: neural network, KB: knowledge-base, MND: multi-variate Normal distribution, GMM: Gaussian mixture model, KDE: kernel density
estimation).

with pruning to generate efficient CNNs and long short-
term memories. SCANN [31] combines feature dimensionality
reduction with grow-and-prune synthesis to generate very
compact models that can be easily deployed on edge devices
and Internet-of-Things sensors.

Orthogonal to the above works, low-bit quantization of
DNN weights can also be used to reduce computations in a
network with little to no accuracy drop [42].

Smart healthcare is another emerging area that is related
to CovidDeep. It has led to the development of a vari-
ety of advanced devices and systems for monitoring various
biomedical signals and diagnosing several health conditions.
A health decision support system is described in [27] to
embed machine learning models at various tiers of health-
care. SoDA uses machine learning models to detect and
alleviate the stress level of the user using WMSs [43].
SaYoPillow [44] also uses a smart wearable to monitor stress
during sleep. Stress-Lysis [45] is a DNN-based approach for
monitoring stress based on three sources of data, namely,
body temperature, rate of motion, and sweat during phys-
ical activity. DiabDeep enables detection of Type I/II dia-
betes using WMSs and DNNs [28]. Another application of
smart healthcare is in the design of edge devices to accu-
rately detect seizure episodes based on electroencephalogra-
phy (EEG) signals [46], [47], [48]. Monitoring user’s cardiac
activity [49], blood glucose level [50], and mental health [51]
are among other use cases of smart healthcare platforms.
Developing methods for faster data preparation and process-
ing [52] and efficient inference on the edge [53] will be useful
for further progress in this area.

III. METHODOLOGY

In this section, we present the CovidDeep framework. First,
we give an overview of the entire framework. Then, we

describe the DNN architecture that is used in CovidDeep for
inference. We also describe how synthetic data generation can
be used to impose a prior on the DNN weights and then use
the DNN grow-and-prune synthesis paradigm to boost the test
accuracy further and ensure the computational efficiency of
the model.

A. Framework Overview

The CovidDeep framework is shown in Fig. 1. It obtains
data from two different sources: physiological signals and
questionnaire. It has two flows: one that does not use syn-
thetic data and another one that does. When synthetic data
are not used, the framework just uses the real dataset divided
into three categories: training, validation, and test. It trains
the DNNs with the training dataset and picks the best one
for the given set of features based on the validation dataset,
and finally tests this DNN on the test dataset to obtain the
test accuracy. However, when the real training dataset size
is small, it is often advantageous to draw a synthetic dataset
from the same probability distribution. CovidDeep uses syn-
thetic data generation methods to increase the dataset size
and use such data to pre-train the DNN architecture. Then,
it uses grow-and-prune synthesis to generate inference mod-
els that are both accurate and computationally-efficient. The
models generated by CovidDeep are efficient enough to be
deployed on the edge, e.g., the smartphone or smartwatch, for
SARS-CoV-2/COVID-19 inference.

Next, we discuss the data input, model training, and model
inference details.

• Data input: As mentioned above, physiological signals
and a questionnaire are the two sources of data input to
the model. The physiological signals are derived from
WMSs embedded in a smartwatch as well as a dis-
crete pulse oximeter and blood pressure monitor. These



HASSANTABAR et al.: CovidDeep: SARS-CoV-2/COVID-19 TEST BASED ON WEARABLE MEDICAL SENSORS 247

signals can be easily obtained in a non-invasive, pas-
sive, and user-transparent manner. The list of these
signals includes Galvanic skin response (GSR), inter-beat
interval (IBI) that indicates the heart rate, skin temper-
ature, oxygen saturation, and blood pressure: systolic
and diastolic. In the questionnaire, we ask the follow-
ing yes/no questions: immune-compromised, chronic lung
disease, cough, shortness of breath, chills, fever, muscle
pain, headache, sore throat, smell-taste loss, and diarrhea.
We collected data on age, gender, weight, height, and
smoking/drinking (yes/no), but did not find them to be
useful either because of overfitting or being unrepresen-
tative. All the relevant data sources are aggregated into a
comprehensive data input for further processing.

• Model training: CovidDeep uses different types of DNN
models: (i) those trained on the raw data only, (ii) those
trained on raw data augmented with synthetic data to
boost accuracy, and (iii) those subjected to grow-and-
prune synthesis for both boosting accuracy further and
reducing model size. The first type of DNN model uses
a few hidden layers. The second type of DNN model
is trained based on a system called TUTOR [29] and
is suitable for settings where data availability is lim-
ited. It provides the DNN with a suitable inductive bias.
The third type of DNN model is based on the grow-
and-prune DNN synthesis paradigm and employs three
architecture-changing operations: neuron growth, connec-
tion growth, and connection pruning. These operations
have been shown to yield DNNs that are both accurate
and efficient [31].

• Model inference: CovidDeep enables the users to have
SARS-CoV-2/COVID-19 detection decision on their edge
device on demand.

Next, we discuss the CovidDeep DNN architecture.

B. Model Architecture

Fig. 2 shows the processing pipeline of the CovidDeep
framework. The architecture takes the data inputs (shown at
the bottom) and generates a prediction, i.e., the detection deci-
sion, (shown at the top). The pipeline consists of four steps:
data pre-processing, synthetic data generation and architecture
pre-training, grow-and-prune synthesis, and output generation
through softmax.

In the data pre-processing stage, data normalization and data
alignment/aggregation are done.

• Data normalization: This step is aimed at changing fea-
ture values to a common scale. While data normalization
is not always required, it is highly beneficial in the case
of datasets that have features with very different ranges. It
leads to better noise tolerance and improvement in model
accuracy [54]. Data normalization can be done in several
ways, such as min-max scaling and standardization. In
this work, we use min-max scaling to map each data input
to the [0, 1] interval. Scaling can be done as follows:

xscaled = x − min(x)

max(x) − min(x)

Fig. 2. An illustration of the CovidDeep processing pipeline to generate
predictions from data inputs.

• Data alignment/aggregation: The data from different
WMSs may have different start times and frequencies.
In order to merge them into a dataset, we need to syn-
chronize the data streams based on their timestamps. The
answers to the questions in the questionnaire are also
added to the final dataset.

Synthetic data generation: The training dataset generated in
the above manner is next used to generate a synthetic dataset
that is used to pre-train the DNN. These synthetic data and pre-
training steps are based on the TUTOR framework [29]. The
schematic diagram of the training scheme based on synthetic
data is shown in Fig. 3. The synthetic dataset is generated in
three different ways in TUTOR:

• Using multi-variate Normal distribution (MND): In this
approach, the real training dataset, i.e., the one obtained
as a fraction of the data obtained from the WMSs and
questionnaire, is modeled as a normal distribution to
generate the synthetic data.

• Using Gaussian mixture model (GMM): This approach
uses a multi-dimensional GMM to model the data
distribution. The optimal number of GMM compo-
nents is obtained with the help of a validation dataset.
Subsequently, the synthetic dataset is generated from this
GMM.

• Using kernel density estimation (KDE): This approach
uses non-parametric density estimation to estimate the
probability distribution as a sum of many kernels. In our
implementation, KDE is based on the Gaussian kernel
function. The synthetic data are generated based on
samples generated from this model.
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Fig. 3. The schematic diagram for pre-training of the DNN model with the
synthetic dataset (DT/RF: decision tree/random forest, NN: neural network,
KB: knowledge-base).

Building a knowledge base (KB): After generation of the
synthetic data, we need to label the data points. To this end, we
build a KB from the real training dataset. Decision tree (DT)
and random forest (RF) are two classical machine learning
methods that are inherently rule-based. In fact, each decision
path in a decision tree, from the root to a leaf, can be thought
of as a rule. Therefore, we aim to identify the set of rules that
best describes the data. We use such a model as a KB to label
the generated synthetic dataset.

Training with synthetic data: We use the labeled synthetic
data to impose a prior on the DNN weights. To accomplish
this, we pre-train the DNN model by using the generated syn-
thetic dataset. This provides the network with an appropriate
inductive bias and helps the network to “get underway." This
helps improve accuracy when data availability is limited.

C. Grow-and-Prune DNN Synthesis

In this section, we discuss the grow-and-prune synthesis
paradigm [30], [31]. The approach presented in [31] allows the
depth of the DNN to grow during synthesis. Thus, a hidden
neuron can receive inputs from any neuron activated before it
(including input neurons) and can feed its output to any neuron
activated after it (including output neurons). As a result, the
depth of the model is determined based on how the hidden neu-
rons are connected, enabling the depth to be changed during
training. We use three basic architecture-changing operations
in the grow-and-prune synthesis process that are discussed
next.

Connection growth: This activates the dormant connections
in the network. The weights of the added connections are
set to 0 and trained later. We use two different methods for
connection growth:

• Gradient-based growth: This approach was first intro-
duced by Dai et al. [30]. Algorithm 1 shows the process
of gradient-based growth. Each weight matrix has a corre-
sponding binary mask of the same size. This mask is used

Algorithm 1 Connection Growth Algorithm

Input: W ∈ RM×N : weight matrix of dimension M × N (con-
necting layer with M neurons to layer with N neurons);
Mask ∈ RM×N : weight mask of the same dimension as
the weight matrix; Network P; W.grad: gradient of the
weight matrix (of dimension M × N); data D; α: growth
ratio
if full growth then

Mask[1:M,1:N] = 1
else if gradient-based growth then

Forward propagation of data D through network P and
then back-propagation
Accumulation of W.grad for one training epoch
t = (α × MN)th largest element in the |W.grad| matrix
for all w.gradij do

if
∣
∣w.gradij

∣
∣ > t then

Maskij = 1
end if

end for
end if
W = W ⊗ Mask

Output: Modified weight matrix W and mask matrix Mask

Algorithm 2 Connection Pruning Algorithm

Input: Weight matrix W ∈ RM×N ; mask matrix Mask of the
same dimension as the weight matrix; α: pruning ratio
t = (α × MN)th largest element in |W|
for all wij do

if
∣
∣wij

∣
∣ < t then

Maskij = 0
end if

end for
W = W ⊗ Mask

Output: Modified weight matrix W and mask matrix Mask

to disregard the inactive connections. The algorithm adds
connections to reduce the loss function L significantly.
To this end, the gradients of all the dormant connections
are evaluated and their effectiveness ranked based on this
metric. During a training epoch, the gradients of all the
weight matrices for all the data mini-batches are captured
in the back-propagation step. An inactive connection is
activated if its gradient magnitude is large relative to the
gradients in its associated layer.

• Full growth: This connection growth restores all the
dormant connections in the network to make the DNN
fully-connected.

Connection pruning: Connection pruning deactivates the
connections that are smaller than a specified threshold.
Algorithm 2 shows this process.

Neuron growth: This step adds neurons to the network and
thus increases network size. This is done by duplicating exist-
ing neurons in the architecture. To break the symmetry, random
noise is added to the weights of all the connections related to
the newly added neurons. The neurons to be duplicated are
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Algorithm 3 Neuron Growth Algorithm

Input: Network P; weight matrix W ∈ RM×N ; mask matrix
Mask of the same dimension as the weight matrix; data
D; candidate neuron nj to be added; array A of activation
values for all hidden neurons
if activation-based selection then

forward propagation through P using data D
i = argmax (A)

else if random selection then
randomly pick an active neuron ni

end if
Maskj· = Maski·, Mask·j = Mask·i
wj· = wi· + noise, w·j = w·i + noise

Output: Modified weight matrix W and mask matrix Mask

either selected randomly or based on higher activation values.
The process is explained in Algorithm 3.

We apply connection pruning after neuron growth and con-
nection growth in each iteration. Grow-and-prune synthesis
starts from a fully connected architecture (mask values set to
1) and runs for a pre-defined number of iterations. Finally, the
architecture that performs the best on the validation dataset is
chosen.

IV. IMPLEMENTATION DETAILS

In this section, we first explain how the data were obtained
from 87 individuals and how various datasets were prepared
from the data. We also provide implementation details of the
CovidDeep DNN model.

A. Data Collection and Preparation

We collected physiological signals and questionnaire data
with Institutional Research Board (IRB) approval at San
Matteo Hospital in Pavia, Italy. 30 individuals were healthy
(referred to as Cohort 1) and the remaining were SARS-CoV-
2-positive with varying levels of disease severity. The SARS-
CoV-2-positive cases were categorized into two other cohorts:
asymptomatic (Cohort 2 with 27 individuals) and symptomatic
(Cohort 3 with 30 individuals). Distinguishing among these
cohorts is important to ascertain who may be spreading the
virus unknowingly and to determine whether medical support
is needed for symptomatic individuals. Hence, we train DNN
models that can perform three-way classification.

To collect the physiological signals, we used commercially
available devices: Empatica E4 smartwatch (sensors we found
useful: GSR, IBI, skin temperature), a pulse oximeter, and a
blood pressure monitor. Alongside the physiological signals,
we employed a questionnaire to collect information about pos-
sible COVID-19-related symptoms from all the individuals.
We also collected data about age, gender, weight, height, and
smoking/drinking (yes/no), but did not rely on these features
as they were not necessarily representative of the larger pop-
ulation. Table I shows all the data types that we found to be
useful. The smartwatch data capture the physiological state
of the user. GSR measures continuous variations in the elec-
trical characteristics of the skin, such as conductance, which

TABLE I
DATA TYPES COLLECTED IN THE COVIDDEEP FRAMEWORK

can be caused by variations in body sweat. IBI correlates with
cardiac health. Furthermore, skin acts as a medium for insu-
lation, sweat, and control of blood flow. Although it is not a
clear indicator of internal body temperature, skin temperature
helps assess skin health. The pulse oximeter indirectly mea-
sures blood oxygen saturation. It is a comfortable and painless
way of measuring how well oxygen is being sent to parts of
the body furthest from the heart, such as the arms and legs.
Blood pressure exposes various underlying health problems.
Last, but not the least, the questionnaire elicits information
that may help improve COVID-19 detection accuracy. From
all these sources of data, we derive various subsets as datasets
for use in the CovidDeep framework to see which data features
are the most beneficial to obtaining a high detection accuracy.
In addition, the various sensor subsets have different costs.
Hence, our results also let one take test accuracy vs. cost into
consideration.

Before data collection commences, we inform the participants
about the procedure. We then collect some relevant information
and COVID-19-related symptoms in response to a questionnaire.
We place the pulse oximeter on the index finger of the user for
blood oxygen measurement. We also obtain the systolic/diastolic
blood pressure measurements. We place the smartwatch on the
participant’s wrist. Data collection lasts for at most one hour for
each participant, during which time we collect sensor data from
the smartwatch. We stream the data from the smartwatch to
the smartphone over Bluetooth in real-time using a smartphone
application. This application collects the data and performs
basic validation to ensure data integrity.

Next, we pre-process the raw data to generate a compre-
hensive dataset. To this end, we first synchronize the WMS
data streams. We then divide the data streams into 15-second
data windows. We then split the participants into three differ-
ent sets: training, validation, and test. The training set contains
data from 52 individuals, approximately 60% of all the partic-
ipants. Among the 52 individuals represented in the training
set, 18 are healthy, 16 are asymptomatic (but virus-positive),
and 18 are symptomatic (and virus-positive). The validation
set consists of data from 17 individuals, approximately 20% of
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all the participants, with 6, 5, and 6 individuals from Cohorts
1, 2, and 3, respectively. The test set contains data from 18
individuals, approximately 20% of all the participants, with
6 individuals from each of the three cohorts. This data parti-
tioning ensures that all the data collected from any individual
are limited to just one of the three sets. Furthermore, the data
instances extracted from each individual have no time overlap.
In addition, in order to conduct ablation studies to gauge the
impact of different data streams, we create different datasets,
with various subsets of all the features.

B. Model Implementation

We have implemented the CovidDeep framework in
PyTorch. We perform DNN training on the Nvidia Tesla P100
data center accelerator, with 16GB of memory. We use cuDNN
library to accelerate GPU processing. Next, we give the details
of the implemented DNN architectures trained on the different
datasets.

We train various DNNs (with different numbers of layers
and different numbers of neurons per layer) and verify their
performance on the validation dataset. In general, a four-layer
architecture with 256, 128, 128, and 3 neurons, respectively,
performs the best. The number of neurons in the input layer
depends on which subset of features is selected for training the
DNN. In the case of the full dataset, the input layer has 194
neurons, which indicates the dataset dimension. We obtain the
features of the dataset from the 15-second data window as fol-
lows. Sensor data collected from the smartwatch in the data
window consist of 180 signal readings, hence 180 features,
from the three data streams running at 4Hz. We derive 11 fea-
tures from the 11 questionnaire questions. Finally, we append
the pulse oximeter oxygen saturation measurement and sys-
tolic/diastolic blood pressure measurements to obtain a feature
vector of length 194.

We use leaky ReLU as the nonlinear activation function in
all the DNN layers. As explained in Section III, we gener-
ate three DNNs for each dataset: (i) DNN trained on the real
training dataset, (ii) DNN pre-trained on the synthetic dataset
and then trained on the real training dataset, and (iii) DNN
synthesized and trained with the grow-and-prune synthesis
paradigm.

C. Network Training

We use the stochastic gradient descent optimizer for DNN
training, with a learning rate of 5e-3 and batch size of 256. We
use 100000 synthetic data instances to pre-train the network
architecture. Moreover, in the grow-and-prune synthesis phase,
we train the network for 20 epochs each time the archi-
tecture changes. We apply network-changing operations over
five iterations. In this step, we use pruning to achieve a pre-
defined number of connections in the network, chosen based
on performance on the validation set.

V. EXPERIMENTAL RESULTS

In this section, we analyze the performance of CovidDeep
DNN models. We target three-way classification among the
three cohorts described earlier. In addition, we perform an

TABLE II
CONFUSION MATRIX FOR THE MOST ACCURATE THREE-WAY

CLASSIFICATION MODEL

ablation study to analyze the impact of different subsets of fea-
tures as well as different steps of CovidDeep DNN synthesis.
We also describe the processing flow of the CovidDeep smart-
phone app that we have developed for edge-side diagnosis.

The CovidDeep DNN models are first evaluated with four
different metrics: test accuracy, false positive rate (FPR), false
negative rate (FNR), and F1 score. These terms are based on
the following terms:

• True positive (negative): SARS-CoV-2/COVID-19
(healthy) data instances classified as SARS-CoV-
2/COVID-19 (healthy).

• False positive (negative): healthy (SARS-CoV-2/
COVID-19) data instances classified as SARS-CoV-2/
COVID-19 (healthy).

These metrics evaluate model performance from different per-
spectives. Test accuracy evaluates its overall prediction power.
It is simply the ratio of all the correct predictions on the test
data instances and the total number of such instances. The FPR
is defined as the ratio of the number of negative, i.e., healthy,
instances wrongly categorized as positive (false positives) and
the total number of actual negative instances. The FNR is the
ratio of positives that yield different test outcomes. Thus, there
is an FNR for both Cohorts 2 and 3. Because of the three-way
classification, the F1 score we report is the Macro F1 score.

A. Model Performance Evaluation

We obtained the highest test accuracy with a DNN model
trained with the grow-and-prune synthesis paradigm on the
dataset that contained features from four categories: GSR,
pulse oximeter (Ox), blood pressure (BP), and questionnaire
(Q). Table II shows the confusion matrix for three-way clas-
sification among the three cohorts: Cohort 1 (healthy), Cohort
2 (asymptomatic-positive), Cohort 3 (symptomatic-positive),
denoted as C1, C2, and C3, respectively. CovidDeep DNN
achieves a test accuracy of 98.1%. The model achieves an
FPR of only 0.8%. The low FPR means that the model does
not raise many false alarms. It results in a 4.5% FNR for
Cohort 2 and a 0.0% FNR for Cohort 3, denoted as FNR(2)
and FNR(3), respectively (each FNR refers to the ratio of the
number of false predictions for that cohort divided by the total
number of data instances of that type). The low FNRs demon-
strate the ability of the DNN model to not miss virus-positive
cases. Moreover, the Macro F1 score of the DNN model is
also high: 98.2%.

Next, we compare the three DNN models, trained on the
real training dataset, with the aid of synthetic data, and with
the aid of grow-and-prune synthesis, for the most accurate
case in Table III. From this comparison, we see that the use
of synthetic data and then grow-and-prune synthesis is able to
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TABLE III
TEST ACCURACY, FPR, FNRS, AND F1 SCORE (ALL IN %) FOR THE THREE DNN MODELS OBTAINED

FOR THE MOST ACCURATE CASE

TABLE IV
TEST ACCURACY, FPR, FNRS, AND F1 SCORE (ALL IN %) FOR TWO DNN MODELS OBTAINED FOR

FEATURE SUBSETS FROM ONE, TWO OR THREE DATA CATEGORIES

boost the test accuracy compared to the DNN model trained
on just the real dataset. In addition, we see improvements in
the FPR and FNR values. The F1 score also follows the same
trend, increasing with the use of synthetic data, and even more
with the use of grow-and-prune synthesis.

B. Ablation Studies

In this section, we report results on various ablation stud-
ies. We begin by considering DNN models trained on features
obtained from subsets of the six data categories (five sensors
and the questionnaire). This helps us understand the impact of
each of these categories and their various combinations. Then,
we analyze the impact of different parts of the CovidDeep

training process, pre-training with synthetic data, and grow-
and-prune synthesis.

Since there are six data categories from which the corre-
sponding features are obtained, there are 64 subsets. However,
one of these subsets is the null subset. Thus, we evaluate the
remaining 63 subsets. For these evaluations, we only consider
the first two types of DNN models, referred to as DNN Models
1 and 2. We consider grow-and-prune synthesis-based models
later. The results shown in Table IV correspond to the case
when features from only one, two or three data categories are
chosen, and in Table V when features from four, five or six
data categories are chosen. In these tables, Temp denotes skin
temperature.
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TABLE V
TEST ACCURACY, FPR, FNRS, AND F1 SCORE (ALL IN %) FOR TWO DNN MODELS OBTAINED FOR

FEATURE SUBSETS FROM FOUR, FIVE OR SIX DATA CATEGORIES

TABLE VI
COMPARISON OF THE THREE DNN MODELS (ALL PERFORMANCE METRICS IN %) FOR VARIOUS FEATURE SETS

We first notice that DNN Model 2 generally performs better
than DNN Model 1 across the various performance metrics.
This underscores the importance of using synthetic data when
the available dataset size is not large. Second, we observe that
since this is a three-way classification, only 33.3% accuracy
is possible by randomly predicting one of the three Cohorts.
Thus, even single data categories (GSR, Temp, IBI, Ox, BP, Q)
enable much better prediction than by chance. These single
data categories are still only weak learners of the correct label,
when used in isolation. Third, DNN models, in general, tend to
perform better on the various performance metrics when more
data categories are used. However, this is not always true. For
example, we obtain the highest accuracy of 93.6% with DNN
Model 2 when only features from four (GSR, Temp, Ox, BP)
of the six categories are used. Adding features based on IBI
or Q or both to these four categories actually reduces the test
accuracy. This may be due to the curse of dimensionality.
When the number of features increases, in general, the dataset
size needs to be increased to obtain a good accuracy. For
a fixed dataset size, this curse indicates that the number of

features should be reduced. However, throwing out informa-
tive features would also reduce accuracy. In addition, some
features are interactive, i.e., work synergistically to increase
accuracy. Hence, a balance has to be found between accu-
racy and the number of features. Finally, when not all sensors
are available (perhaps due to cost reasons), a suitable set that
still provides reasonable accuracy can be chosen based on the
given cost budget. This may help a broader cross-section of
the population access the technology.

To illustrate the effect of the different parts of the
CovidDeep training process, we compare 11 CovidDeep DNN
models, trained based on the different DNN synthesis and
training steps. We chose these models from different accuracy
ranges. Table VI shows comparison results for the three-
way classification task. We have already compared various
performance metrics for DNN Models 1 and 2 earlier. Hence,
here, we just report their accuracy, FLOPs, and number of
model parameters (#Param). The best DNN Model 3 was
obtained with the help of the validation dataset. This enabled
us to find the best #Param. value. Only this model was tested
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TABLE VII
TEST ACCURACY (%) COMPARISONS WITH TRADITIONAL MACHINE LEARNING MODELS FOR VARIOUS DATA CATEGORIES

Fig. 4. Screenshots of the CovidDeep app user experience.

on the test dataset. Acc.(1) and Acc.(2), respectively, refer
to the accuracy of DNN Models 1 and 2. The FLOPs and
#Param. for these two models are identical. We report all the
performance metrics for DNN Model 3 that is generated by
grow-and-prune synthesis using both real and synthetic data.
Thus, the starting point for DNN Model 3 synthesis is DNN
Model 2. Next, we compare DNN Model 3 with the other two
models based on various measures and show why it is suitable
for deployment on the edge devices.

• Smaller model size: It contains 3.4× fewer parameters on
an average (geometric mean) than DNN Models 1 and 2,
thus significantly reducing the memory requirements.

• Less computation: It reduces FLOPs per inference by
3.5× on an average (geometric mean) relative to DNN
Models 1 and 2, thus facilitating more efficient inference
on the edge devices.

• Better performance: It improves accuracy on an average
by 7.8% (1.9%) relative to DNN Model 1 (2), while also
lowering FPR and FNRs, in general.

Next, we compare the performance of CovidDeep DNNs
with that of traditional machine learning models on the same
11 data categories evaluated in Table VI. Table VII com-
pares the test accuracies. As we can see, CovidDeep DNNs
outperform the other models for all 11 data categories. This

highlights the difficulty traditional models face for classifica-
tion based on raw data.

C. CovidDeep Smartphone Application

The CovidDeep DNN models can be deployed on a smart-
phone for edge inference by embedding them inside a smart-
phone app. We have developed the CovidDeep app for both
iOS and Android devices. It uses Bluetooth to send sensor
data to the smartphone. It includes fours steps: (i) capturing
of sensor data from the Empatica E4 smartwatch, (ii) entering
of data from the questionnaire and discrete sensors, (iii) data
normalization, and (iv) DNN processing for diagnosis.

Fig. 4 shows several screenshots that depict user experi-
ence with the CovidDeep app. First, to capture physiological
signals, the user is instructed to put on the Empatica E4
smartwatch on the wrist and turn it on. The smartwatch has
to be paired with the mobile device using Bluetooth dis-
covery. Once the smartwatch is paired, it can be controlled
using the Empatica mobile software development kit. In this
app, physiological signals are collected for one minute, result-
ing in four 15-second window data instances. Since not all
sensors start reporting data at the same time, the elapsed
time is typically slightly longer than a minute. Then, the
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user enters the questionnaire information and blood pres-
sure/oxygen saturation values in the app. On iOS devices,
if the user enables HealthKit integration and blood pressure
and oxygen saturation values exist, they are auto-populated in
the app. The normalization module normalizes the data using
the minimum and maximum values employed in the train-
ing process. The inference module uses PyTorch application
program interfaces to send the four 15-second data instances
and obtains average prediction probabilities after DNN pro-
cessing. Finally, a threshold is used with the average proba-
bilities to predict the virus-positive or virus-negative status of
the user.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss several points related to the
CovidDeep framework. First, we discuss two inspirations
we took from the human brain in the synthesis process of
the CovidDeep DNNs. Next, we discuss future directions in
medical research enabled by this framework.

CovidDeep took inspiration from the human brain in utiliz-
ing synthetic data in the DNN synthesis process. An interesting
ability of the human brain is to efficiently solve novel problems
in a new domain despite limited prior experience. Inspired
by this human capability, CovidDeep uses the TUTOR [29]
approach for synthetic data generation and labeling to help the
neural network start from a better initialization point. Hence, it
reduces the need for large datasets that are not readily available
for SARS-CoV-2/COVID-19 AI research.

The CovidDeep DNN training process takes another inspira-
tion from the human brain development process in the grow-
and-prune DNN synthesis step. The human brain undergoes
dynamic changes in its synaptic connections every second of
its lifetime. Acquisition of knowledge depends on these synap-
tic rewirings [55]. Inspired by this phenomenon, CovidDeep
utilizes the grow-and-prune synthesis paradigm to enable DNN
architecture adaptation throughout training. CovidDeep DNNs
obtained through grow-and-prune synthesis do not suffer from
the situation faced by most current DNNs: fixed connections
during training. This enables CovidDeep to generate very
compact, yet accurate, models for SARS-CoV-2/COVID-19
detection.

CovidDeep uses physiological signals obtained using com-
mercially available sensors to achieve a high test accuracy.
As a result, it provides a testing mechanism that is accu-
rate, easily accessible to the general public, and easy for
individuals to use. It demonstrates that WMS-based SARS-
CoV-2/COVID-19 detection is feasible. We continue to collect
more data across various countries for further validation of
the CovidDeep models. The CovidDeep framework, alongside
previous studies on diabetes diagnosis with the help of such
sensors [28], gives us confidence that in the future WMS-
based disease detection is feasible for a large number of
diseases [27].

VII. CONCLUSION

In this article, we proposed a framework called
CovidDeep to facilitate daily and pervasive detection of

SARS-CoV-2/COVID-19. The framework combines off-
the-shelf WMSs with efficient DNNs to achieve this goal.
It uses synthetic data generation to alleviate the need for
large datasets. Training of CovidDeep DNNs based on
the grow-and-prune synthesis paradigm enables them to
learn both the weights and the architecture during training.
Hence, these DNNs can be easily deployed on edge devices
(e.g., smartphones or smartwatches) as well as servers.
CovidDeep was evaluated based on data collected from 87
individuals. The highest accuracy it achieves is 98.1%. We
also obtained high enough test accuracies for many different
sets of sensor/questionnaire data categories. Thus, users can
choose the DNN model that is based on the sensors that
are most conveniently accessible to them from the market.
With more data collected from larger deployment scenarios,
the accuracy of CovidDeep DNNs can be improved further
through incremental learning.
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